cfnr.net
当前位置:首页 >> 积神经网络原理 >>

积神经网络原理

作者:杨延生 链接: 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 "深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。 新的网络结构中最著名的就是CNN,它解决了传统较深的网络...

rbf神经网络即径向基函数神经网络(Radical Basis Function)。径向基函数神经网络是一种高效的前馈式神经网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。同时,它也是一种可以广泛应用于模式识别、...

没有卷积神经网络的说法,只有卷积核的说法。 电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模...

前馈神经网络就是一层的节点只有前面一层作为输入,并输出到后面一层,自身之间、与其它层之间都没有联系,由于数据是一层层向前传播的,因此称为前馈网络。 BP网络是最常见的一种前馈网络,BP体现在运作机制上,数据输入后,一层层向前传播,然...

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。 卷积神经...

输入数据是n*n的像素矩阵,再使用全连接神经网络,那么参数的个数会是指数级的增长,需要训练的数据太多。 而CNN的话,可以通过共享同一个参数,来提取特定方向上的特征,所以训练量将比全连接神经网络小了很多。

可以学习到数据的特征...............

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习,又名多层神经网络,DNN,由汉丁在2006年命名,其实就是多层神经网络,具体这段黑历史可以查阅资料 卷积神经网络,CNN,是深度学习的一种方法,主要用来解决图像识别问题 由严乐春提出,因为加入了卷积核而得名

卷积神经网络只是深度神经网络/深度学习的一种特殊形式而已。

网站首页 | 网站地图
All rights reserved Powered by www.cfnr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com