cfnr.net
当前位置:首页 >> 卷积神经网络算法原理 >>

卷积神经网络算法原理

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。 图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征...

看你的目的是什么了,一般传统分类的输出是图片的种类,也就是你说的一维向量,前提是你输入图像是也是一维的label。 如果你输入的是一个矩阵的label,也可以通过调整网络的kernel达到输出一个矩阵的labels。

输入数据是n*n的像素矩阵,再使用全连接神经网络,那么参数的个数会是指数级的增长,需要训练的数据太多。 而CNN的话,可以通过共享同一个参数,来提取特定方向上的特征,所以训练量将比全连接神经网络小了很多。

rbf神经网络即径向基函数神经网络(Radical Basis Function)。径向基函数神经网络是一种高效的前馈式神经网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。同时,它也是一种可以广泛应用于模式识别、...

最近在做这方面的毕设,这张图能帮助你理解。虽然过了这么久可能你已经明白了。

从理论上说,并没有。 梯度弥散的问题很大程度上是来源于激活函数的“饱和”。因为在后向传播的过程中仍然需要计算激活函数的导数,所以一旦卷积核的输出落入函数的饱和区,它的梯度将变得非常校但是Hinton教授提出的在CNN中使用ReLu作为激活函数...

学习得来的。 一开始卷积核(参数W和b)都被“初始化”成很小的“随机值”。LeCun和Bengio教授的文章中建议在处理图像问题时,可以选择将W和b按照~U(-sqrt(3/k),sqrt(3/k))初始化。其中k是W和b的连接总数。假如滤波器的大小是4*4,那么k为16,U表...

前馈神经网络就是一层的节点只有前面一层作为输入,并输出到后面一层,自身之间、与其它层之间都没有联系,由于数据是一层层向前传播的,因此称为前馈网络。 BP网络是最常见的一种前馈网络,BP体现在运作机制上,数据输入后,一层层向前传播,然...

主要区别是在多层感知机中,对层定义和深度处理方法不同。深度神经网络模仿人脑思考方式,首先逐层构建单层神经元,这样每次都是训练一个单层网络。当所有层训练完后,使用wake-sleep算法进行调优。卷积神经网络通过“卷积核”作为中介。同一个卷...

这个太多了,卷积是一种结构,凡是包含这种结构的深度网络都是卷积神经网络。比较知名的有:VGG、GoogleNet、Resnet等

网站首页 | 网站地图
All rights reserved Powered by www.cfnr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com