cfnr.net
当前位置:首页 >> 卷积神经网络算法原理 >>

卷积神经网络算法原理

看你的目的是什么了,一般传统分类的输出是图片的种类,也就是你说的一维向量,前提是你输入图像是也是一维的label。 如果你输入的是一个矩阵的label,也可以通过调整网络的kernel达到输出一个矩阵的labels。

首先搞清楚机器学习以及卷积神经网络概念。其实卷积神经网络是机器学习中的一种算法。主要用于图像特征提龋而机器学习主要指统计机器学习。而机器学习有三个要素:1、模型2、策略3、算法,CNN属于一种算法。所以没有什么优于的说法。

作者:杨延生 链接: 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 "深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。 新的网络结构中最著名的就是CNN,它解决了传统较深的网络...

网络的下一层和上一层之间通过卷积核连接,或者说上一层的数据和卷积核卷积之后得到下一层。在全连接网络中,上一层的每个数据和下一层的每个数据都会有关,局部连接的意思就是说下一层只和上一层的局部数据有关。 这张图就是全连接,下一层每一...

受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、...

神经系统(nervous system)是机体内对生理功能活动的调节起主导作用的系统,主要由神经组织组成,分为中枢神经系统和周围神经系统两大部分。中枢神经系统又包括脑和脊髓,周围神经系统由它们发出的神经组成,包括脑神经和脊神经。 中枢神经系统...

学习得来的。 一开始卷积核(参数W和b)都被“初始化”成很小的“随机值”。LeCun和Bengio教授的文章中建议在处理图像问题时,可以选择将W和b按照~U(-sqrt(3/k),sqrt(3/k))初始化。其中k是W和b的连接总数。假如滤波器的大小是4*4,那么k为16,U表...

用一个卷积核滑动图片来提取某种特征(比如某个方向的边),然后激活函数用ReLU来压制梯度弥散。对得到的结果用另一个卷积核继续提取+reLU,然后池化(保留区域最大或者用区域平均来替换整个局部区域的值,保证平移不变性和一定程度上对过拟合的...

卷积神经网络有以下几种应用可供研究: 1、基于卷积网络的形状识别 物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要...

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。 卷积神经...

网站首页 | 网站地图
All rights reserved Powered by www.cfnr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com